Code Quest — Playing, Learning, and Teaching Guide

For teachers, instructors, players from the Code Quest and Gaming4Coding project team.

Co-funded by
the European Union

A joyful game for learning fundamental programming

The core idea in the Code Quest game is that players should collect the cute fantasy creatures
that are called 'critters'. Players can train the critters by giving them instruction scripts build
by real programming code. However, the training is purposefully not called programming in
order to give the game more of a playful, and less of a technical feeling. The main gameplay
consists of collecting interesting critters, training them for racing and entering them into a race
against other players. Races are held on different obstacle courses where the critters compete
either against bots or against other players. Training and racing courses are set in different
environment such as on a beach.

Figure 1. The Dream Beach course

A monster taming game with multi-player options and built in learning analytics

Many educational games for learning how to program are role-playing games (RPGs) built
around puzzle mechanics. An RPG is a game in which participants assume the role of a
character that can interact within an imaginary game world. Less games are designed to have
a focus on training and collecting creatures. The game genre characterised by training and
collecting creatures is called Monster-taming game, inspired by the popular Pokémon saga.
Another under-explored feature of games for developing computational thinking and learning
programming is the multiplayer design. Code Quest implements this option, allowing players
to play against either against the computer or against each other. This dual design allows

researchers to study learning outcomes, gaming behaviour, and the effects of competition
during learning in the field of learning programming.

The game is designed and developed around the 4 pillars of:

1. Collecting: The activity of collecting things has a large appeal as a game element,
especially when the player can collect creatures. The most prominent example of this
is the Pokémon game. Since new creatures are awarded for winning races or for other
achievements the interest in collecting critters has a strong impact on the motivation
of the players to get better at coding, so that collecting new critters becomes easier.

2. Rewards: Rewards are very important for player motivation. The game rewards
victories in races so that players get something out of having created well-working
training scripts for their critters. However, the game also rewards personal
achievements, even if the player doesn’t end up winning the race. Thus, rewards play
an important role in keeping the motivation high for any learning and gaining of
experience. The biggest rewards are new collectable critters, smaller rewards are
special items for the critters and trophies.

3. Competition: The competition element is a well-established way to challenge a player
to become better. The game uses a mixture of players and bots as competitors so that
the player always has the opportunity to win against someone, even if it is too hard to
win first place. Competition should also give players an opportunity to learn from
others.

4. Matching Difficulty: The game uses a smart algorithm to assign competence levels to
players in order to match them with other players or bots that are performing at
comparable levels. This avoids having a beginner crushed by a very advanced player.

Being able to choose between different creatures to play with, compete with other players,
complete challenges and discover new blocks of code to progress with are intended to be the
motivating engine that keeps players interested and motivated.

OVERVIEW CONTESTS (TRAINING @ SHOP

Critters love parkours, and
it is important to keep
them busy. Here, | will
show you one.

Figure 2. Training critters by writing code

In a race the player only has limited control over the critters as they are mainly in the role of
a spectator. Winning or losing a race has a lot to do with which critter is selected for the race
track and which commands are given to the critter in the ‘training script’. This is where it is
most important to get new creatures and train them to fit the different circuits. When training
a critter, a player writes down a sequence of commands which the critter will execute in the
race. This could start in a very simple way (“run”, “run”, “run”, “jump”) and then move to more
advanced coding structures with while loops and conditionals. The game never pushes the
player to advance in coding skills, however the competitive aspect and the rewards for winning
races are a huge motivation to improve the performance of the critters, thus leading to players

trying out more advanced code.

Another feature is that the view where the code is implemented mixes both a more visual
part, of predefined code blocks, with a textual part that follows the Python syntax. Python
syntax was chosen for the coding elements since Python is one of the most popular
programming languages which is also widely recommended for school environments in
Europe. It is also easy to learn. In the actual game the players first learn how to give critters
commands in order to guide them through an obstacle course. Commands correspond to
functions in Python but the players will be using predefined functions from the beginning
(such as run, dodgeleft, dodgeRight, jump, etc.) before learning how to create their own
functions.

OVERVIEW CONTESTS | TRAINING SHOP

GENERAL%

SEEEREEEE S~

Jump Forward

Move Forward

Figure 3. An advanced level in the Code Quest game

Sections and levels of training mode

In this game the players first learn how to give critters commands in order to guide them
through an obstacle course. Commands correspond to functions in Python but the players will
be using predefined functions from the beginning (such as run, dodgeLeft, dodgeRight, jump,
etc.) before learning how to create their own functions. The game starts with tutorials which
challenge the player to solve a situation, so they are essentially little puzzles that help the
player acquire the skills needed. The tutorials gradually introduce the player to the competitive

racing game in which more critters can be unlocked and rewards can be won. Tutorials that are
recommended to be used as parts of lessons and workshops in programming education.

Players with earlier experience of fundamental programming could skip the tutorials and
immediately start training their critters and enter them into races. However, in educational
settings the strong recommendation is to start with teacher led sessions, where lessons or
workshop activities could be built around the learning sections and levels that are presented
here below.

Figure 4. The training track selection

Section 1: The Game Environment and the Race Tracks

The game has been designed with the idea of being intuitive and with a low initial threshold.
However, to meet the aim of an educational game for all this section can be helpful to get all
learners aboard and feel comfortable in the Code Quest environment. As for all other sections
players could be divided into groups where the players with more experience of gaming and
coding could help the novices.

Level 1: Getting used to how race tracks work

Training mode starts out nice and gently with only one lane, with only one button to make
the critter walk. Here in Level 1, the player is introduced to taking care of a critter and
moving around in the game world. The game interaction starts with only a simple button to
carry out the 'Move forward' command.

Level 2: Learning which individual track types the critter needs to perform different tasks

In the next level a water pit is added, but still with only one lane in the track. Here the player
is introduced to having several possible moves, when a ‘Jump forward button’ has been
added.

Section 2: Patterns and Repetitive Tasks

From this section, and through the rest of the training mode, the player uses the game's coding
menus instead of just simple buttons. Patterns and repetitive task are fundamental as well as
very useful building blocks in both programming and computational thinking.

Figure 5. A track with a coding menu

Level 1: Understanding repetition

A strength of a computer system is the ability to repeat simple instructions very fast. Instead
of pushing a button 10 times to walk 10 steps forward, the instruction can be repeated 10
times in a repetition instruction. Here in Level 1, the user has not learnt about the for loop
yet, so s/he must use the walk forward coding element 10 times.

Level 2: Understanding that a for loop reduces the workload in repetitive tasks

In this level the 10 step of walking forward, is executed with a for-loop. A programming
construction that is a fundamental part of all modern programming languages. The for-loop
coding element has been added and the player is reminded of how s/he had to use the same
coding element 10 times in the previous level. With the difference that the 10 repetitions now
can be executed in a for-loop.

Level 3: Understanding the timing of for-loops

Repetition or, as it is called in Computer science iteration, could be used for more than one
instruction. As an example, an iterated pattern in the Code Quest game at this level isto for
6 iterations, walk forward, then jump and then walk forward again. This should better be
explained in a bit longer activity since this for-loop is the most complex instruction in the
training guide so far.

Level 4: Repetitive Patterns

The training proceeds at this level with a slightly more in-depth use of for-loops, using several
types of instructions in the same loop. The repeated pattern here is to walk forward and to
jump, which is executed 4 times in a row from a for-loop.

Level 5: More Complex Repetitive Patterns

An even more in-depth practice of for loops, with the use of several types of coding elements
in the loop, and also with other code instructions outside of the loops. The training active is
structured as repeat 4 times in a row the execution of: {move forward 2 times and jump one
time}. Moreover, do one jump at the end to reach the desired target.

There are much better ways to do
this. A For Loop reduces the amount
of training we need to setup, as it
repeats the commands we give it
as many times as we want.

Figure 6. Learning about for-loops and repeated patterns at 5 levels with increasing difficulty.

Section 3: Boolean conditions and selection

Several programming constructions such as iteration and selection are controlled by conditions
based on Boolean binary algebra. The algebra part has been simplified to suit the target
audience, but without conditions and selection, no advanced critter training scripts. Selection
is, in almost all programming languages implemented with if- and else-clauses. As all other
code in the Code Quest game the involved code is given, and entered, with executable Python
code.

Level 1: Understanding conditions and the if-statement

This activity involves the creation of a condition that checks if your next tile type is a pit or
ground. The critter should only move forward, if it is a grass tile. Otherwise, do nothing. In
this first level the track is only 1-2 units long, and the player is instructed to use this new coding
elements, the conditions and an if-statement to move forward in the given track.

Level 2: Understanding the else-statement

The if-statements best friend is the complementing else-statement. At this level the
instruction from the previous level is extended as: Create a condition that checks if your next
tile type is a pit or ground. Move forward if it is a grass tile. Otherwise, if it is a pit, do a
jump, or if it is ground, do a walk command. The player should use both the if and the else
part of a condition that leads to different execution paths.

Level 3: Conditions in a for loop

As mentioned earlier conditions are also used to steer repetition structures such as a for-loop.
Here at Level 3 code instructions should be created for a script like: for 5 times, check the next
tile type and jump if it is a pit or walk if it is not. Now the player must use all previous
knowledge from the earlier sections and levels to complete this level. Moreover, this is the first
track that is randomized. Step by step the difficulty level has increased and the player gets
more blocks and skills to create winning critter scripts.

COMMANDS

Move FORWARD N
JUmP FORWARD
3 3 | .
S for i in range(0, D

Execute on Start

Condition

Figure 7. Combining selection, iteration and conditions in advanced training script

Section 4: Variables and debugging

Without the important component variables, the scripts will never be particularly useful. For
an older target group with a more mathematical background, the variable concept is one of
the first things to introduce. In this game, where the actual coding is a bit hidden, the choice
was to put this important component here in Section 4. Moreover, we find it suitable to
combine activities on variables with the introduction of debugging. To trace errors in code by
checking values of variables is an important part of computational thinking and programming.

Level 1: Understanding variables and the debugger
This level starts out easy by initialising a variable, and for 10 times, to walk forward and add
one to the variable. The debugger shows the current state of the variable at all steps and the

updated value is visualised. Variables are gently and clearly introduced and their values should
be followed and checked by the debugger. While the code is running the debugger shows the
values of the variables that the player uses. This is carried out simple and straightforward here
in Level 1, to provide the basic understanding for more complex constructions in the following
levels.

Level 2: Checking a variable in a loop

The next level is about the combination of a variable and a loop in the steps of.

A variable is initialised and set to the value of 5

A while loop is created with the variable as its iterator

The while loop should be executed until the variable is 0

Inside the while loop the variable is reduced by one in every execution step

At the same time the loop should move a critter one step forward

The player is instructed how to use a while loop with a variable to reach the end of a
track

oV .k wNPRE

Level 3: Constants, variables, conditions and loops combined

Besides of variables a programmer sometimes also uses constants in the code. Both are used
together with conditions to control steering structures such as while and for loops. The
instructions for Level 3 are:

Initialise and set a value to a constant with the name 'trackLength'

Initialise and set a value to a variable that tracks the square that the playeris in
Create a while loop that runs until the critter reaches the end of the track

Inside the while loop, check if a move action or a jump is needed

If critters need to jump, carry out that action and add 2 to the variable, otherwise
move forward and add 1

uAWNE

As in earlier sections, this last level acts as a checkpoint where the player must use all
previous learnt knowledge and skills.

Section 5: Multiple Lanes

This is the section that presents the full complexity of the game idea, and how more advanced
code should be constructed to solve more complex critter training tasks. From here and
onwards the tracks involves more than one lane, with possibilities to switch lanes.

Level 1: Understanding that it is possible to switch lanes

The player should Move Left one time as there is an obstacle that can’t be passed (such as 3
pits in a row). Build a while loop to walk forward until the track ends, with the use of the track
length constant. Every time when moving forward, add one to a variable. This is a simple level
where the player gets used to seeing and using several lanes.

Level 2: Maze Runner
Build a while loop that moves forward until the track ends. Use track length constant as in
Level 1. If there is an obstacle in front such as a stone block that can’t be passed in any way,

check if it is possible to move left or right. Depending on the result, move left or right, and if
nothing is in front of the critter, just move forward. Every time when moving forward, add one
to a variable. This level is in a maze where the player must be comfortable with coding and
moving in between lanes to complete the task.

Level 3: Loops inside Loops

To write code with loops inside loops is a frequently used technique in programming, but not
that easy to understand in detail. This is carried out in this level in a race track on which the
critter has to:

1. move all the way to the right

2. then 2 steps forward,

3. then all the way to the left

4. then two steps forward

5. then all the way to the right again

The two loops should be coordinated as:
1. The outer loop counts how far the critter has come and moves the critter forward
2. Theinner loop moves critter either to the right or to the left until it reaches the edge

A complex level where the player must be fully aware of the effects of the coding in order to reach
the end, using various techniques from all the previous sections.

Section 6: Simple Functions

Functions in Python, or any other programming language, is much the same as coordinating
instructions in a mathematical function. Once a function is completed and tested, it can be reused in
other scripts for solving a specific task. A lesson learnt is that the function concept in programming is
a bit hard to grasp and use for beginners. For that reason, the concept was placed here in Section 6.

Level 1: A Simple Function
As always, the first level starts out nice and gently, and here it is about defining a simple
function that lets you jump, move, jump and jump. Building on techniques learnt in the
previous section:
1. Write a while loop that lasts until the track ends (use the track length constant)
2. Inthe loop, always move until you find a pit.
3. If you find a pit, execute the function

Level 2: Side to Side Functions
This level gets a bit more complex when several collaborating functions should be defined:

1. Define a function that lets you moves you all the way left

2. Define a function that moves you all the way right

3. Write a while loop that lasts until the track ends (use the track length constant)
4. Inthe loop, always move until you find a pit

5. If you find a pit, jump over it

6. If you find a stone obstacle, use one of the movement functions

7. Atthe end of the function, if you're still in an obstacle, use the other function

Section 7: Character Ability introductions (Tim elaborates here)

Level 1: Critter Abilities

This level introduces the fact that critters have special abilities and how that affect the gameplay. As
an example, players are informed how the critter Frogette can navigate. This illustrates that players
can finish the level without jumping, and just by walking on water.

After training comes gaming
Code Quest is built around the idea of combining the initial learning with joyful gaming where
programming skills should be practiced.

Cm
NODB®OOD
| setectaNbsTART

Figure 8. After training comes gaming

Learning to program should be fun, and the training sections should better be combined with
playing sessions. Players would then understand the connection between training, coding
skills and successful gaming. The exact mix and progression tempo will always be depending
on both the learner group and the individual players. Some players learn fast and develop a
strong passion for programming. As a teacher or instructor, you will probably get questions
about coding details or programming syntax that can be hard to answer. There are many good
resources on the Internet for programming and Python code examples. One that has been
thoroughly developed and covers both fundamental and advanced programming in Python is
the one on: https://python-course.eu/python-tutorial/

Happy Gaming, Happy Coding!

/The Gaming4Coding Team

Co-funded by
the European Union

Language Disclaimer

BG

)

DA

DE

EL

EN

ES

ET

®unHaHcMpaHo oT EBponelickuA cbtos. M3paseHunTe Bb3rneam U MHeHusa obaye
NpUHaanexaT U3Lsano Ha TexHua(uTe) aBTop(n) U He oTpassaBaT HENPEMEHHO
Bb3rieguTe U MHeHMATa Ha EBponelickuA cbio3 unum Ha EBponeicKkaTa
M3MbJHUTE/IHA areHumMa 3a obpasoBaHue 1 KynTypa (EACEA). 3a TAX He Hocu
OTroBOPHOCT HMUTO EBpONencKmAT cbto3, HUTO EACEA.

Financovdno Evropskou unii. Nazory vyjadiené jsou ndzory autora a neodrazi
nutné oficialni stanovisko Evropské unie ¢i Evroské vykonné agentury pro
vzdélavani a kulturu (EACEA). Evropskd unie ani EACEA za vyjadiené nazory
nenese odpovédnost.

Finansieret af Den Europaiske Union. Synspunkter og holdninger, der kommer til
udtryk, er udelukkende forfatterens/forfatternes og er ikke ngvendigvis udtryk
for Den Europaiske Unions eller Det Europeeiske Forvaltningsorgan for
Uddannelse og Kulturs (EACEA) officielle holdning. Hverken den Europeiske
Union eller EACEA kan holdes ansvarlig herfor.

Von der Européischen Union finanziert. Die gedufRerten Ansichten und
Meinungen entsprechen jedoch ausschlieRlich denen des Autors bzw. der
Autoren und spiegeln nicht zwingend die der Europdischen Union oder der
Europaischen Exekutivagentur fir Bildung und Kultur (EACEA) wider. Weder die
Europaische Union noch die EACEA kénnen dafiir verantwortlich gemacht
werden.

Me tn xpnuatoddtnon g Eupwnaikng Evwong. Ot amdPeLg Kot oL yVWUES TTOU
Slatunwvovtal ekppalouv AMOKAELOTIKA TIG amOPELS TWV CUVTAKTWY Kol SV
QVTUTPOCWIEUOUV KAT avaykn Ti¢ anoPelg tng Eupwnaikng Evwong r tou
EupwmaikoU EkteAeotikol OpyaviopoU Ekmaidsuong kat MoAwtiopov (EACEA). H
Eupwmnaikn Evwon kat o EACEA dgv umopouv va BewpnBouv umetBuvol yla Tig
ekppalopevec anoPelc.

Funded by the European Union. Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those of the European Union
or the European Education and Culture Executive Agency (EACEA). Neither the
European Union nor EACEA can be held responsible for them.

Financiado por la Unién Europea. Las opiniones y puntos de vista expresados solo
comprometen a su(s) autor(es) y no reflejan necesariamente los de la Unién
Europea o los de la Agencia Ejecutiva Europea de Educacion y Cultura (EACEA). Ni
la Unién Europea ni la EACEA pueden ser considerados responsables de ellos.

Rahastatud Euroopa Liidu poolt. Avaldatud seisukohad ja arvamused on ainult
autori(te) omad ega pruugi kajastada Euroopa Liidu vdi Euroopa Hariduse ja

FI

FR

GA

HR

HU

LT

LV

MT

NL

Kultuuri Rakendusameti (EACEA) seisukohti ja arvamusi. Euroopa Liit ega EACEA
nende eest ei vastuta.

Euroopan unionin rahoittama. Esitetyt nakemykset ja mielipiteet ovat ainoastaan
taman tekstin laatijoiden nakemyksia eivatka valttamatta vastaa Euroopan
unionin tai Euroopan koulutuksen ja kulttuurin toimeenpanovirasto (EACEA)
kantaa. Euroopan unioni ja EACEA eivat ole vastuussa niista.

Financé par I’'Union européenne. Les points de vue et avis exprimés n’engagent
toutefois que leur(s) auteur(s) et ne refletent pas nécessairement ceux de I’'Union
européenne ou de I’Agence exécutive européenne pour I'éducation et la culture
(EACEA). Ni I’'Union européenne ni 'EACEA ne sauraient en étre tenues pour
responsables.

Arna mhaoinil ag an Aontas Eorpach. Is leis an Udar/na hddair amhain na tuairimi
agus na dearcthai a léiritear agus ni ga gur léirid iad ar thuairimi agus dearcthai an
Aontais Eorpaigh né na Gniomhaireachta Feidhmilchdin Eorpai um Oideachas
agus Cultur (EACEA). Ni féidir freagracht a chur ar an Aontas Eorpach nd ar an
EACEA astu.

Financirano sredstvima Europske unije. Izneseni stavovi i misljenja su stavovi i
misljenja autora i ne moraju se podudarati sa stavovima i misljenjima Europske
unije ili Europske izvr$ne agencije za obrazovanje i kulturu (EACEA). Ni Europska
unija ni EACEA ne mogu se smatrati odgovornima za njih.

Az Eurdpai Unid finanszirozdsaval. Az itt szerepld vélemények és allitasok a
szerz6(k) allaspontjat tikrozik, és nem feltétleniil egyeznek meg az Eurdpai Unid
vagy az Eurdpai Oktatasi és Kulturalis Végrehajté Ugyndkség (EACEA) hivatalos
allaspontjaval. Sem az Eurdpai Unid, sem az EACEA nem vonhaté felelGsségre
miattuk.

Finanziato dall'Unione europea. Le opinioni espresse appartengono, tuttavia, al
solo o ai soli autori e non riflettono necessariamente le opinioni dell'Unione
europea o dell’Agenzia esecutiva europea per l'istruzione e la cultura (EACEA). Né
I'Unione europea né I'EACEA possono esserne ritenute responsabili.

Finansuojama Europos Sgjungos IéSomis. Taciau iSreiSkiamas pozilris ar nuomoné
yra tik autoriaus (-iy) ir neb@tinai atspindi Europos Sgjungos ar Europos Svietimo
ir kultGros vykdomosios jstaigos (EACEA) pozilrj ar nuomone. Nei Europos
Sgjunga, nei EACEA negali bati laikoma uzZ juos atsakinga.

Eiropas Savienibas finanséts. Paustie viedokli un uzskati atspogulo autora(-u)
personigos uzskatus un ne vienmeér sakrit ar Eiropas Savienibas vai Eiropas
Izgltitibas un Kultdras izpildagentlras (EACEA) viedokli. Ne Eiropas Savieniba, ne
EACEA nenes atbildibu par paustajiem uzskatiem.

Iffinanzjat mill-Unjoni Ewropea. Madankollu, il-fehmiet u l-opinjonijiet espressi
huma dawk tal-awtur(i) biss u mhux necessarjament jirriflettu dawk tal-Unjoni
Ewropea jew tal-Agenzija Ezekuttiva Ewropea ghall-Edukazzjoni u ghall-Kultura
(EACEA). La I-Unjoni Ewropea u langas I-EACEA ma jistghu jinzammu responsabbli
ghalihom.

Gefinancierd door de Europese Unie. De hier geuite ideeén en meningen komen
echter uitsluitend voor rekening van de auteur(s) en geven niet
noodzakelijkerwijs die van de Europese Unie of het Europese Uitvoerende

PL

PT

RO

SK

SL

SV

Agentschap onderwijs en cultuur (EACEA) weer. Noch de Europese Unie, noch het
EACEA kan ervoor aansprakelijk worden gesteld.

Sfinansowane ze $rodkéw UE. Wyrazone poglady i opinie sg jedynie opiniami
autora lub autoréw i niekoniecznie odzwierciedlajg poglady i opinie Unii
Europejskiej lub Europejskiej Agencji Wykonawczej ds. Edukacji i Kultury (EACEA).
Unia Europejska ani EACEA nie ponoszg za nie odpowiedzialnosci.

Financiado pela Unido Europeia. Os pontos de vista e as opinides expressas sao as
do(s) autor(es) e ndo refletem necessariamente a posicdo da Unido Europeia ou
da Agéncia de Execuc¢do Europeia da Educacdo e da Cultura (EACEA). Nem a
Unido Europeia nem a EACEA podem ser tidos como responsaveis por essas
opinides.

Finantat de Uniunea Europeana. Punctele de vedere si opiniile exprimate apartin,
Tnsd, exclusiv autorului (autorilor) si nu reflecta neaparat punctele de vedere si
opiniile Uniunii Europene sau ale Agentiei Executive Europene pentru Educatie si
Cultura (EACEA). Nici Uniunea Europeana si nici EACEA nu pot fi considerate
raspunzatoare pentru acestea.

Financované Eurdpskou Uniou. Vyjadrené ndzory a postoje sU nazormi a
vyhlaseniami autora(-ov) a nemusia nevyhnutne odrazat nazory a stanoviska
Eurdpskej Unie alebo Eurdpskej vykonnej agentury pre vzdeldvanie a kultdru
(EACEA). Eurdpska unia ani EACEA za ne nepreberaju Ziadnu zodpovednost.

Financirano s strani Evropske unije. Izrazena staliS¢a in mnenja so zgolj stali¢a in
mnenja avtorja(-ev) in ni nujno, da odrazajo stalis¢a in mnenja Evropske unije ali

Evropske izvajalske agencije za izobraZzevanje in kulturo (EACEA). Zanje ne moreta
biti odgovorna niti Evropska unija niti EACEA.

Finansieras av Europeiska unionen. De synpunkter och asikter som uttrycks ar
endast upphovsmannens [upphovsmannens] och utgor inte Europeiska unionens
eller Europeiska genomférandeorganet for utbildning och kulturs (EACEA)
officiella standpunkt. Varken Europeiska unionen eller EACEA tar nagot ansvar for
dessa.

