
Code Quest – Playing, Learning, and Teaching Guide
For teachers, instructors, players from the Code Quest and Gaming4Coding project team.

A joyful game for learning fundamental programming
The core idea in the Code Quest game is that players should collect the cute fantasy creatures
that are called 'criƩers'. Players can train the criƩers by giving them instrucƟon scripts build
by real programming code. However, the training is purposefully not called programming in
order to give the game more of a playful, and less of a technical feeling. The main gameplay
consists of collecƟng interesƟng criƩers, training them for racing and entering them into a race
against other players. Races are held on different obstacle courses where the criƩers compete
either against bots or against other players. Training and racing courses are set in different
environment such as on a beach.

Figure 1. The Dream Beach course

A monster taming game with mulƟ-player opƟons and built in learning analyƟcs
Many educational games for learning how to program are role-playing games (RPGs) built
around puzzle mechanics. An RPG is a game in which participants assume the role of a
character that can interact within an imaginary game world. Less games are designed to have
a focus on training and collecting creatures. The game genre characterised by training and
collecting creatures is called Monster-taming game, inspired by the popular Pokémon saga.
Another under-explored feature of games for developing computational thinking and learning
programming is the multiplayer design. Code Quest implements this option, allowing players
to play against either against the computer or against each other. This dual design allows

researchers to study learning outcomes, gaming behaviour, and the effects of competition
during learning in the field of learning programming.

The game is designed and developed around the 4 pillars of:

1. Collecting: The activity of collecting things has a large appeal as a game element,
especially when the player can collect creatures. The most prominent example of this
is the Pokémon game. Since new creatures are awarded for winning races or for other
achievements the interest in collecting critters has a strong impact on the motivation
of the players to get better at coding, so that collecting new critters becomes easier.

2. Rewards: Rewards are very important for player motivation. The game rewards
victories in races so that players get something out of having created well-working
training scripts for their critters. However, the game also rewards personal
achievements, even if the player doesn’t end up winning the race. Thus, rewards play
an important role in keeping the motivation high for any learning and gaining of
experience. The biggest rewards are new collectable critters, smaller rewards are
special items for the critters and trophies.

3. Competition: The competition element is a well-established way to challenge a player

to become better. The game uses a mixture of players and bots as competitors so that
the player always has the opportunity to win against someone, even if it is too hard to
win first place. Competition should also give players an opportunity to learn from
others.

4. Matching Difficulty: The game uses a smart algorithm to assign competence levels to

players in order to match them with other players or bots that are performing at
comparable levels. This avoids having a beginner crushed by a very advanced player.

Being able to choose between different creatures to play with, compete with other players,
complete challenges and discover new blocks of code to progress with are intended to be the
moƟvaƟng engine that keeps players interested and moƟvated.

Figure 2. Training criƩers by wriƟng code

In a race the player only has limited control over the critters as they are mainly in the role of
a spectator. Winning or losing a race has a lot to do with which critter is selected for the race
track and which commands are given to the critter in the ‘training script’. This is where it is
most important to get new creatures and train them to fit the different circuits. When training
a critter, a player writes down a sequence of commands which the critter will execute in the
race. This could start in a very simple way (“run”, “run”, “run”, “jump”) and then move to more
advanced coding structures with while loops and conditionals. The game never pushes the
player to advance in coding skills, however the competitive aspect and the rewards for winning
races are a huge motivation to improve the performance of the critters, thus leading to players
trying out more advanced code.

Another feature is that the view where the code is implemented mixes both a more visual
part, of predefined code blocks, with a textual part that follows the Python syntax. Python
syntax was chosen for the coding elements since Python is one of the most popular
programming languages which is also widely recommended for school environments in
Europe. It is also easy to learn. In the actual game the players first learn how to give critters
commands in order to guide them through an obstacle course. Commands correspond to
functions in Python but the players will be using predefined functions from the beginning
(such as run, dodgeLeft, dodgeRight, jump, etc.) before learning how to create their own
functions.

Figure 3. An advanced level in the Code Quest game

SecƟons and levels of training mode
In this game the players first learn how to give criƩers commands in order to guide them
through an obstacle course. Commands correspond to funcƟons in Python but the players will
be using predefined funcƟons from the beginning (such as run, dodgeLeŌ, dodgeRight, jump,
etc.) before learning how to create their own funcƟons. The game starts with tutorials which
challenge the player to solve a situaƟon, so they are essenƟally liƩle puzzles that help the
player acquire the skills needed. The tutorials gradually introduce the player to the compeƟƟve

racing game in which more criƩers can be unlocked and rewards can be won. Tutorials that are
recommended to be used as parts of lessons and workshops in programming educaƟon.

Players with earlier experience of fundamental programming could skip the tutorials and
immediately start training their criƩers and enter them into races. However, in educaƟonal
seƫngs the strong recommendaƟon is to start with teacher led sessions, where lessons or
workshop acƟviƟes could be built around the learning secƟons and levels that are presented
here below.

Figure 4. The training track selection

SecƟon 1: The Game Environment and the Race Tracks
The game has been designed with the idea of being intuiƟve and with a low iniƟal threshold.
However, to meet the aim of an educaƟonal game for all this secƟon can be helpful to get all
learners aboard and feel comfortable in the Code Quest environment. As for all other secƟons
players could be divided into groups where the players with more experience of gaming and
coding could help the novices.

Level 1: Geƫng used to how race tracks work

Training mode starts out nice and gently with only one lane, with only one button to make
the critter walk. Here in Level 1, the player is introduced to taking care of a critter and
moving around in the game world. The game interaction starts with only a simple button to
carry out the 'Move forward' command.

Level 2: Learning which individual track types the criƩer needs to perform different tasks
In the next level a water pit is added, but still with only one lane in the track. Here the player
is introduced to having several possible moves, when a ‘Jump forward button’ has been
added.

SecƟon 2: PaƩerns and RepeƟƟve Tasks
From this section, and through the rest of the training mode, the player uses the game's coding
menus instead of just simple buttons. Patterns and repetitive task are fundamental as well as
very useful building blocks in both programming and computational thinking.

Figure 5. A track with a coding menu

Level 1: Understanding repeƟƟon
A strength of a computer system is the ability to repeat simple instructions very fast. Instead
of pushing a button 10 times to walk 10 steps forward, the instruction can be repeated 10
times in a repetition instruction. Here in Level 1, the user has not learnt about the for loop
yet, so s/he must use the walk forward coding element 10 times.

Level 2: Understanding that a for loop reduces the workload in repeƟƟve tasks

In this level the 10 step of walking forward, is executed with a for-loop. A programming
construcƟon that is a fundamental part of all modern programming languages. The for-loop
coding element has been added and the player is reminded of how s/he had to use the same
coding element 10 Ɵmes in the previous level. With the difference that the 10 repeƟƟons now
can be executed in a for-loop.

Level 3: Understanding the Ɵming of for-loops
Repetition or, as it is called in Computer science iteration, could be used for more than one
instruction. As an example, an iterated pattern in the Code Quest game at this level is to for
6 iterations, walk forward, then jump and then walk forward again. This should better be
explained in a bit longer activity since this for-loop is the most complex instruction in the
training guide so far.

Level 4: RepeƟƟve PaƩerns
The training proceeds at this level with a slightly more in-depth use of for-loops, using several
types of instructions in the same loop. The repeated pattern here is to walk forward and to
jump, which is executed 4 times in a row from a for-loop.

Level 5: More Complex RepeƟƟve PaƩerns
An even more in-depth practice of for loops, with the use of several types of coding elements
in the loop, and also with other code instructions outside of the loops. The training active is
structured as repeat 4 times in a row the execution of: {move forward 2 times and jump one
time}. Moreover, do one jump at the end to reach the desired target.

Figure 6. Learning about for-loops and repeated patterns at 5 levels with increasing difficulty.

SecƟon 3: Boolean condiƟons and selecƟon
Several programming construcƟons such as iteraƟon and selecƟon are controlled by condiƟons
based on Boolean binary algebra. The algebra part has been simplified to suit the target
audience, but without condiƟons and selecƟon, no advanced criƩer training scripts. SelecƟon
is, in almost all programming languages implemented with if- and else-clauses. As all other
code in the Code Quest game the involved code is given, and entered, with executable Python
code.

Level 1: Understanding condiƟons and the if-statement
This activity involves the creation of a condition that checks if your next tile type is a pit or
ground. The critter should only move forward, if it is a grass tile. Otherwise, do nothing. In
this first level the track is only 1-2 units long, and the player is instructed to use this new coding
elements, the conditions and an if-statement to move forward in the given track.

Level 2: Understanding the else-statement
The if-statements best friend is the complemenƟng else-statement. At this level the
instrucƟon from the previous level is extended as: Create a condiƟon that checks if your next
Ɵle type is a pit or ground. Move forward if it is a grass Ɵle. Otherwise, if it is a pit, do a
jump, or if it is ground, do a walk command. The player should use both the if and the else
part of a condiƟon that leads to different execuƟon paths.

Level 3: CondiƟons in a for loop
As menƟoned earlier condiƟons are also used to steer repeƟƟon structures such as a for-loop.
Here at Level 3 code instrucƟons should be created for a script like: for 5 Ɵmes, check the next
Ɵle type and jump if it is a pit or walk if it is not. Now the player must use all previous
knowledge from the earlier secƟons and levels to complete this level. Moreover, this is the first
track that is randomized. Step by step the difficulty level has increased and the player gets
more blocks and skills to create winning criƩer scripts.

Figure 7. Combining selection, iteration and conditions in advanced training script

SecƟon 4: Variables and debugging
Without the important component variables, the scripts will never be parƟcularly useful. For
an older target group with a more mathemaƟcal background, the variable concept is one of
the first things to introduce. In this game, where the actual coding is a bit hidden, the choice
was to put this important component here in SecƟon 4. Moreover, we find it suitable to
combine acƟviƟes on variables with the introducƟon of debugging. To trace errors in code by
checking values of variables is an important part of computaƟonal thinking and programming.

Level 1: Understanding variables and the debugger
This level starts out easy by iniƟalising a variable, and for 10 Ɵmes, to walk forward and add
one to the variable. The debugger shows the current state of the variable at all steps and the

updated value is visualised. Variables are gently and clearly introduced and their values should
be followed and checked by the debugger. While the code is running the debugger shows the
values of the variables that the player uses. This is carried out simple and straighƞorward here
in Level 1, to provide the basic understanding for more complex construcƟons in the following
levels.

Level 2: Checking a variable in a loop
The next level is about the combination of a variable and a loop in the steps of.

1. A variable is iniƟalised and set to the value of 5
2. A while loop is created with the variable as its iterator
3. The while loop should be executed unƟl the variable is 0
4. Inside the while loop the variable is reduced by one in every execuƟon step
5. At the same Ɵme the loop should move a criƩer one step forward
6. The player is instructed how to use a while loop with a variable to reach the end of a

track

Level 3: Constants, variables, condiƟons and loops combined
Besides of variables a programmer someƟmes also uses constants in the code. Both are used
together with condiƟons to control steering structures such as while and for loops. The
instrucƟons for Level 3 are:

1. Initialise and set a value to a constant with the name 'trackLength'
2. Initialise and set a value to a variable that tracks the square that the player is in
3. Create a while loop that runs until the critter reaches the end of the track
4. Inside the while loop, check if a move action or a jump is needed
5. If critters need to jump, carry out that action and add 2 to the variable, otherwise

move forward and add 1

As in earlier sections, this last level acts as a checkpoint where the player must use all
previous learnt knowledge and skills.

SecƟon 5: MulƟple Lanes
This is the secƟon that presents the full complexity of the game idea, and how more advanced
code should be constructed to solve more complex criƩer training tasks. From here and
onwards the tracks involves more than one lane, with possibiliƟes to switch lanes.

Level 1: Understanding that it is possible to switch lanes
The player should Move Left one time as there is an obstacle that can’t be passed (such as 3
pits in a row). Build a while loop to walk forward until the track ends, with the use of the track
length constant. Every time when moving forward, add one to a variable. This is a simple level
where the player gets used to seeing and using several lanes.

Level 2: Maze Runner
Build a while loop that moves forward until the track ends. Use track length constant as in
Level 1. If there is an obstacle in front such as a stone block that can’t be passed in any way,

check if it is possible to move left or right. Depending on the result, move left or right, and if
nothing is in front of the critter, just move forward. Every time when moving forward, add one
to a variable. This level is in a maze where the player must be comfortable with coding and
moving in between lanes to complete the task.

Level 3: Loops inside Loops
To write code with loops inside loops is a frequently used technique in programming, but not
that easy to understand in detail. This is carried out in this level in a race track on which the
criƩer has to:

1. move all the way to the right
2. then 2 steps forward,
3. then all the way to the leŌ
4. then two steps forward
5. then all the way to the right again

The two loops should be coordinated as:
1. The outer loop counts how far the critter has come and moves the critter forward
2. The inner loop moves critter either to the right or to the left until it reaches the edge

A complex level where the player must be fully aware of the effects of the coding in order to reach
the end, using various techniques from all the previous sections.

SecƟon 6: Simple FuncƟons
FuncƟons in Python, or any other programming language, is much the same as coordinaƟng
instrucƟons in a mathemaƟcal funcƟon. Once a funcƟon is completed and tested, it can be reused in
other scripts for solving a specific task. A lesson learnt is that the funcƟon concept in programming is
a bit hard to grasp and use for beginners. For that reason, the concept was placed here in SecƟon 6.

Level 1: A Simple FuncƟon
As always, the first level starts out nice and gently, and here it is about defining a simple
function that lets you jump, move, jump and jump. Building on techniques learnt in the
previous section:

1. Write a while loop that lasts until the track ends (use the track length constant)
2. In the loop, always move until you find a pit.
3. If you find a pit, execute the function

Level 2: Side to Side FuncƟons
This level gets a bit more complex when several collaborating functions should be defined:

1. Define a function that lets you moves you all the way left
2. Define a function that moves you all the way right
3. Write a while loop that lasts until the track ends (use the track length constant)
4. In the loop, always move until you find a pit
5. If you find a pit, jump over it
6. If you find a stone obstacle, use one of the movement functions
7. At the end of the function, if you’re still in an obstacle, use the other function

SecƟon 7: Character Ability introducƟons (Tim elaborates here)
Level 1: CriƩer AbiliƟes
This level introduces the fact that critters have special abilities and how that affect the gameplay. As
an example, players are informed how the critter Frogette can navigate. This illustrates that players
can finish the level without jumping, and just by walking on water.

AŌer training comes gaming
Code Quest is built around the idea of combining the iniƟal learning with joyful gaming where
programming skills should be pracƟced.

Figure 8. After training comes gaming

Learning to program should be fun, and the training sections should better be combined with
playing sessions. Players would then understand the connection between training, coding
skills and successful gaming. The exact mix and progression tempo will always be depending
on both the learner group and the individual players. Some players learn fast and develop a
strong passion for programming. As a teacher or instructor, you will probably get questions
about coding details or programming syntax that can be hard to answer. There are many good
resources on the Internet for programming and Python code examples. One that has been
thoroughly developed and covers both fundamental and advanced programming in Python is
the one on: https://python-course.eu/python-tutorial/

Happy Gaming, Happy Coding!

/The Gaming4Coding Team

Language Disclaimer

BG

Финансирано от Европейския съюз. Изразените възгледи и мнения обаче
принадлежат изцяло на техния(ите) автор(и) и не отразяват непременно
възгледите и мненията на Европейския съюз или на Европейската
изпълнителна агенция за образование и култура (EACEA). За тях не носи
отговорност нито Европейският съюз, нито EACEA.

CS

Financováno Evropskou unií. Názory vyjádřené jsou názory autora a neodráží
nutně oficiální stanovisko Evropské unie či Evroské výkonné agentury pro
vzdělávání a kulturu (EACEA). Evropská unie ani EACEA za vyjádřené názory
nenese odpovědnost.

DA

Finansieret af Den Europæiske Union. Synspunkter og holdninger, der kommer til
udtryk, er udelukkende forfatterens/forfatternes og er ikke nøvendigvis udtryk
for Den Europæiske Unions eller Det Europæiske Forvaltningsorgan for
Uddannelse og Kulturs (EACEA) officielle holdning. Hverken den Europæiske
Union eller EACEA kan holdes ansvarlig herfor.

DE

Von der Europäischen Union finanziert. Die geäußerten Ansichten und
Meinungen entsprechen jedoch ausschließlich denen des Autors bzw. der
Autoren und spiegeln nicht zwingend die der Europäischen Union oder der
Europäischen Exekutivagentur für Bildung und Kultur (EACEA) wider. Weder die
Europäische Union noch die EACEA können dafür verantwortlich gemacht
werden.

EL

Με τη χρηματοδότηση της Ευρωπαϊκής Ένωσης. Οι απόψεις και οι γνώμες που
διατυπώνονται εκφράζουν αποκλειστικά τις απόψεις των συντακτών και δεν
αντιπροσωπεύουν κατ'ανάγκη τις απόψεις της Ευρωπαϊκής Ένωσης ή του
Ευρωπαϊκού Εκτελεστικού Οργανισμού Εκπαίδευσης και Πολιτισμού (EACEA). Η
Ευρωπαϊκή Ένωση και ο EACEA δεν μπορούν να θεωρηθούν υπεύθυνοι για τις
εκφραζόμενες απόψεις.

EN

Funded by the European Union. Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those of the European Union
or the European Education and Culture Executive Agency (EACEA). Neither the
European Union nor EACEA can be held responsible for them.

ES

Financiado por la Unión Europea. Las opiniones y puntos de vista expresados solo
comprometen a su(s) autor(es) y no reflejan necesariamente los de la Unión
Europea o los de la Agencia Ejecutiva Europea de Educación y Cultura (EACEA). Ni
la Unión Europea ni la EACEA pueden ser considerados responsables de ellos.

ET Rahastatud Euroopa Liidu poolt. Avaldatud seisukohad ja arvamused on ainult
autori(te) omad ega pruugi kajastada Euroopa Liidu või Euroopa Hariduse ja

Kultuuri Rakendusameti (EACEA) seisukohti ja arvamusi. Euroopa Liit ega EACEA
nende eest ei vastuta.

FI

Euroopan unionin rahoittama. Esitetyt näkemykset ja mielipiteet ovat ainoastaan
tämän tekstin laatijoiden näkemyksiä eivätkä välttämättä vastaa Euroopan
unionin tai Euroopan koulutuksen ja kulttuurin toimeenpanovirasto (EACEA)
kantaa. Euroopan unioni ja EACEA eivät ole vastuussa niistä.

FR

Financé par l’Union européenne. Les points de vue et avis exprimés n’engagent
toutefois que leur(s) auteur(s) et ne reflètent pas nécessairement ceux de l’Union
européenne ou de l’Agence exécutive européenne pour l’éducation et la culture
(EACEA). Ni l’Union européenne ni l’EACEA ne sauraient en être tenues pour
responsables.

GA

Arna mhaoiniú ag an Aontas Eorpach. Is leis an údar/na húdair amháin na tuairimí
agus na dearcthaí a léirítear agus ní gá gur léiriú iad ar thuairimí agus dearcthaí an
Aontais Eorpaigh nó na Gníomhaireachta Feidhmiúcháin Eorpaí um Oideachas
agus Cultúr (EACEA). Ní féidir freagracht a chur ar an Aontas Eorpach ná ar an
EACEA astu.

HR

Financirano sredstvima Europske unije. Izneseni stavovi i mišljenja su stavovi i
mišljenja autora i ne moraju se podudarati sa stavovima i mišljenjima Europske
unije ili Europske izvršne agencije za obrazovanje i kulturu (EACEA). Ni Europska
unija ni EACEA ne mogu se smatrati odgovornima za njih.

HU

Az Európai Unió finanszírozásával. Az itt szereplő vélemények és állítások a
szerző(k) álláspontját tükrözik, és nem feltétlenül egyeznek meg az Európai Unió
vagy az Európai Oktatási és Kulturális Végrehajtó Ügynökség (EACEA) hivatalos
álláspontjával. Sem az Európai Unió, sem az EACEA nem vonható felelősségre
miattuk.

IT

Finanziato dall'Unione europea. Le opinioni espresse appartengono, tuttavia, al
solo o ai soli autori e non riflettono necessariamente le opinioni dell'Unione
europea o dell’Agenzia esecutiva europea per l’istruzione e la cultura (EACEA). Né
l'Unione europea né l'EACEA possono esserne ritenute responsabili.

LT

Finansuojama Europos Sąjungos lėšomis. Tačiau išreiškiamas požiūris ar nuomonė
yra tik autoriaus (-ių) ir nebūtinai atspindi Europos Sąjungos ar Europos švietimo
ir kultūros vykdomosios įstaigos (EACEA) požiūrį ar nuomonę. Nei Europos
Sąjunga, nei EACEA negali būti laikoma už juos atsakinga.

LV

Eiropas Savienības finansēts. Paustie viedokļi un uzskati atspoguļo autora(-u)
personīgos uzskatus un ne vienmēr sakrīt ar Eiropas Savienības vai Eiropas
Izglītības un Kultūras izpildaģentūras (EACEA) viedokli. Ne Eiropas Savienība, ne
EACEA nenes atbildību par paustajiem uzskatiem.

MT

Iffinanzjat mill-Unjoni Ewropea. Madankollu, il-fehmiet u l-opinjonijiet espressi
huma dawk tal-awtur(i) biss u mhux neċessarjament jirriflettu dawk tal-Unjoni
Ewropea jew tal-Aġenzija Eżekuttiva Ewropea għall-Edukazzjoni u għall-Kultura
(EACEA). La l-Unjoni Ewropea u lanqas l-EACEA ma jistgħu jinżammu responsabbli
għalihom.

NL
Gefinancierd door de Europese Unie. De hier geuite ideeën en meningen komen
echter uitsluitend voor rekening van de auteur(s) en geven niet
noodzakelijkerwijs die van de Europese Unie of het Europese Uitvoerende

Agentschap onderwijs en cultuur (EACEA) weer. Noch de Europese Unie, noch het
EACEA kan ervoor aansprakelijk worden gesteld.

PL

Sfinansowane ze środków UE. Wyrażone poglądy i opinie są jedynie opiniami
autora lub autorów i niekoniecznie odzwierciedlają poglądy i opinie Unii
Europejskiej lub Europejskiej Agencji Wykonawczej ds. Edukacji i Kultury (EACEA).
Unia Europejska ani EACEA nie ponoszą za nie odpowiedzialności.

PT

Financiado pela União Europeia. Os pontos de vista e as opiniões expressas são as
do(s) autor(es) e não refletem necessariamente a posição da União Europeia ou
da Agência de Execução Europeia da Educação e da Cultura (EACEA). Nem a
União Europeia nem a EACEA podem ser tidos como responsáveis por essas
opiniões.

RO

Finanțat de Uniunea Europeană. Punctele de vedere și opiniile exprimate aparțin,
însă, exclusiv autorului (autorilor) și nu reflectă neapărat punctele de vedere și
opiniile Uniunii Europene sau ale Agenției Executive Europene pentru Educație și
Cultură (EACEA). Nici Uniunea Europeană și nici EACEA nu pot fi considerate
răspunzătoare pentru acestea.

SK

Financované Európskou úniou. Vyjadrené názory a postoje sú názormi a
vyhláseniami autora(-ov) a nemusia nevyhnutne odrážať názory a stanoviská
Európskej únie alebo Európskej výkonnej agentúry pre vzdelávanie a kultúru
(EACEA). Európska únia ani EACEA za ne nepreberajú žiadnu zodpovednosť.

SL

Financirano s strani Evropske unije. Izražena stališča in mnenja so zgolj stališča in
mnenja avtorja(-ev) in ni nujno, da odražajo stališča in mnenja Evropske unije ali
Evropske izvajalske agencije za izobraževanje in kulturo (EACEA). Zanje ne moreta
biti odgovorna niti Evropska unija niti EACEA.

SV

Finansieras av Europeiska unionen. De synpunkter och åsikter som uttrycks är
endast upphovsmannens [upphovsmännens] och utgör inte Europeiska unionens
eller Europeiska genomförandeorganet för utbildning och kulturs (EACEA)
officiella ståndpunkt. Varken Europeiska unionen eller EACEA tar något ansvar för
dessa.

